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Abstract. A two–level smoothed aggregation (or SA) scheme with ten-
tative coarse space constructed by spectral element agglomeration method
is shown to provide weak–approximation property in a weighted L2–
norm. The resulting method utilizing efficient (e.g., polynomial) smoothers
is shown to have convergence factor independent of both the coarse and
fine–grid mesh–sizes, as well as, to be independent of the contrast (i.e.,
possible large jumps in the PDE coefficient) for second order elliptic
problems discretized on general unstructured meshes. The method al-
lows for multilevel extensions. Presented numerical experiments exhibit
behavior in agreement with the developed theory.

1 Introduction

This paper deals with the construction of two-grid iterative methods (or precon-
ditioners) for solving elliptic problems with high contrast coefficient resolved only
by a fine-grid discretization. The aim is to prove two–grid convergence bounds
independent both of the fine and coarse mesh size as well as independent of the
contrast. There are recent two-level results, [GE10], see also [SVZ], that deal
with the construction of coarse spaces when used in combination with overlap-
ping Schwarz method achieving this goal. The construction of the coarse spaces
exploit local (element-based) procedures to construct local (overlapping) coarse
spaces. These local spaces are patched using partition of unity. Similar construc-
tion goes back to the element–based algebraic multigrid (or AMGe) in [ρAMGi].
The latter method was modified in [ρAMGii], see also [LV08], to avoid the use
of partition of unity and to allow for more straightforward multilevel extension
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by applying recursion. So far this is the only known genuine multilevel AMGe
method that does not lead to potentially highly ill-conditioned coarse bases (an
issue arising from the partition of unity formed over overlapping domains used
in a multilevel setting).

The present paper can be viewed as an extension of an early report [BHMV]
from the point of view of handling problems with high contrast. That report
contains also element-based construction of local coarse-spaces which are non–
overlapping (or in terms of finite element functions they have minimal O(h)
overlap). To improve the energy stability of the coarse basis, the polynomial
smoothing idea from the multigrid smoothed aggregation (or SA) method is
applied. In the present paper, we review this approach and also propose an
alternative construction of the local (non–overlapping) spaces. We present a dif-
ferent analysis than [BHMV] following [BVV] to address both the high contrast
coefficient and the aggressive coarsening. The two–level algorithm allows for
multilevel extensions along the lines of [LV08] which provides an alternative to
the formal multilevel extensions of the two–level methods exploiting partition of
unity in [GE10] and [SVZ].

The remainder of the present paper is structured as follows. In Section 2 we
provide two general conditions for the smoother and properties of the associated
coarse space and prove that they ensure bounded two–level convergence factor.
Section 3 contains the main results of the present paper. There, we review and
extend the main results from [BHMV] paying attention to the high contrast
coefficient and aggressive coarsening. Finally, Section 4 contains some numerical
illustration of two- and multilevel results for problems with high–contrast.

2 A two-level convergence result

Consider the product iteration method involving “pre-smoothing” based on solv-
ing with M , coarse–grid solution involving restriction based on PT , coarse-grid
correction based on solving with Ac = PT AP and interpolation based on P , and
finally using “post–smoothing” based on solving with MT , represented by the
following error-propagation matrix

ETL ≡ (I − M−T A)(I − PA−1
c PT A)(I − M−1A). (1)

Solving the system of linear equations, Ax = b, where b is a given right-hand
side and x0 an initial iterate, one iteration of the two-level process is described
by the following algorithm:

Algorithm 1 (Two–level iteration algorithm)

(i) “Pre–smooth:” compute y from M(y − x0) = b − Ax0.
(ii) Restrict defect rc = PT (b − Ay).
(iii) Solve for a coarse–grid correction xc the coarse-grid problem (Ac = PT AP ),

Acxc = rc.



(iii) Interpolate and update fine–grid iterate, z = y + Pxc.
(iv) “Post–smooth”, i.e., solve for xTL, MT (xTL − z) = b − Az.

The mapping b 7→ xTL = B−1
TLb for x0 = 0 defines the inverse of the two–

level operator BTL. Alternatively, formula (1) defines an approximate inverse
(or preconditioner) to A, B−1

TL, from the identity I − B−1
TLA = ETL. If M is

A–convergent, that is ‖I − A
1
2 M−1A

1
2 ‖ < 1 (or equivalently, M + MT − A is

s.p.d.) we then have that B−1
TL is s.p.d. and BTL can be characterized by the

following two-level version of the XZ-identity, cf. [Va08]:

vT BTLv = min
v=vf+Pvc

[
vT

c Acvc +
(
vf − M−T APvc

)T
M
(
vf − M−T APvc

)]
.

Here M = M
(
M + MT − A

)−1
MT is the symmetrized smoother. For any A-

convergent smoother M and Ac = PT AP , we have

vT Av ≤ vT BTLv.

In order to establish convergence properties of the two-level process, our goal is
to estimate the constant, KTL, in the upper bound,

vT BTLv ≤ KTLvT Av,

which is equivalent to 0 ≤ vT AETLv ≤ ̺TL ‖v‖2
A, where KTL = 1

1−̺T L
. For

this we use the above two–level (XZ-) identity by selecting a proper coarse–grid
approximation Pvc to any given v which gives

vT BTLv ≤ vT
c Acvc + 2‖v − Pvc‖2

M
+ 2vT

c PT A
(
M + MT − A

)−1
APvc. (2)

Consider the particular case when A is a s.p.d. sparse matrix coming from
a finite element discretization of an elliptic PDE posed on a domain Ω ⊂ Rd,
(plane polygon for d = 2, or polytope in the case of d = 3). We use quasi-
uniform mesh Th with mesh size h and respective finite element space Vh. Also,
let Nh be the set of Lagrangian degrees of freedom, that in the case of piecewise
linear finite element space Vh coincide with the values at the vertices {xi} of the
elements in Th. The corresponding elliptic bilinear form reads

a(u, ϕ) =

∫

Ω

k(x)∇u · ∇ϕ dx, (3)

where k = k(x) is a given positive coefficient. The coefficient may admit very
large jumps in certain parts of Ω which are assumed resolved by the fine-grid
Th, i.e., k(x) varies smoothly within each fine–grid element τ ∈ Th. Assume also
that we have created a coarse finite element space VH ⊂ Vh where H reflects
the characteristic diameter of the support of the coarse-basis functions. We also
assume that the coarse space satisfies the following approximation property: For
any v ∈ Vh there is a vH ∈ VH such that uniformly in h and H, we have

H−2‖v − vH‖2
0 + a(v − vH , v − vH) ≤ Ca(v, v). (4)



Here, ‖.‖0 is the k–weighted L2–norm, i.e., ‖ϕ‖2
0 =

∫

Ω

k(x) ϕ2(x) dx. Without

loss of generality, we may assume that k is piecewise constant with respect to
the elements of Th. In that case, we have the following norm equivalence for any
finite element function v ∈ Vh and its nodal coefficient vector v = (v(xi))xi∈Nh

‖v‖2
0 =

∫

Ω

k(x) v2(x) dx ≃
∑

xi∈Nh

di v2(xi) = ‖v‖2
DG

. (5)

Here, DG = diag (di) is the diagonal of the k–weighted mass matrix G cor-
responding to the finite element space Vh and the weighted L2 bilinear form
(k ·, ·). We have the following simple inverse inequality

a(v, v) ≤ CIh
−2 ‖v‖2

0,

with a constant CI independent of the coefficient k = k(x) (which is assumed
piecewise constant with respect to the elements τ ∈ Th). Now, consider DA–
the diagonal of A and DG–the diagonal of the weighted mass matrix G. The
following norm equivalence

vT DAv ≃ h−2 vT DGv, (6)

is easily seen to be uniform with respect to both h 7→ 0 and the contrast (jumps of
k). This can be proved directly based on an element-by-element local comparison
of the two quadratic forms. Here, we use the assumption that Th is quasi-uniform.

We consider smoothers M that possess the following “smoothing” property:

vT Mv ≤ β

[
vT Av +

b

(H/h)
2 ‖v‖2

Λ

]
. (7)

Here Λ is a given s.p.d. matrix. b satisfies ‖Λ− 1
2 AΛ− 1

2 ‖ ≤ b. In our case Λ will
be spectrally equivalent to DA. Consider the polynomial smoother M

M−1 =
[
I − pν(b−1Λ−1A)

]
A−1,

where pν(t), pν(0) = 1, is a properly chosen polynomial of degree ν, (cf., [BVV]),
or Section 4 for details). The following estimate holds ([BVV])

xT Mx ≤ β

(
xT Ax +

b

(2ν + 1)2
‖x‖2

Λ

)
. (8)

Thus, if we choose the polynomial degree, ν, so that 2ν + 1 ≃ H
h

, we obtain
estimate (7).

Note that when Λ = DA (the diagonal of A) (or spectrally equivalent to DA)

this would make b ≃ ‖D− 1
2

A AD
− 1

2

A ‖ = O(1) (see Remark 1 below).
For the same polynomial smoother M , it has been shown in [BVV] that the

following coercivity bound holds:

vT (M + MT − A)v ≥ α vT Av. (9)

The constant α in (9) is independent of both h and H.
Now, we are ready to prove the following two-level convergence result.



Theorem 1. Assume that the A–convergent smoother M and its respective sym-
metrized version M satisfy “smoothing property” (7) where DA is the diagonal
of A, and in addition let the coercivity estimate (9) hold. Under the assumption
of norm–equivalence of DA and the diagonal of the weighted mass matrix G,
‖v‖DA

≃ h−1 ‖v‖DG
, assuming that the coarse finite element space VH ensures

the approximation property (4), which rewritten in a matrix-vector form (letting
Pvc be the coefficient vector of vH ∈ VH) reads,

H−2‖v − Pvc‖2
G + ‖v − Pvc‖2

A ≤ Ca ‖v‖2
A, (10)

the following convergence estimate holds:

1

1 − ̺TL

= KTL ≤ Const ≃ 2β max{1, b}Ca + (1 +
2

α
) (1 +

√
Ca)2.

That is, KTL is bounded uniformly with respect to both h and H.

Proof. Using the approximation property (4) together with the assumed norm–
equivalences shows

h2‖v − Pvc‖2
DA

≃ ‖v − Pvc‖2
DG

≃ ‖v − Pvc‖2
G ≤ CaH2 ‖v‖2

A.

By the triangle inequality, we also have that the coarse-grid interpolant Pvc is
bounded in energy, i.e.,

‖vc‖2
Ac

= ‖Pvc‖2
A ≤ (1 +

√
Ca)2 ‖v‖2

A.

Now, from (2), using the smoothing property of M , (7), and the assumed coer-
civity (9), we obtain

vT BTLv ≤ vT
c Acvc + 2‖v − Pvc‖2

M
+ 2vT

c PT A
(
M + MT − A

)−1
APvc

≤ vT
c Acvc +

2

α
‖Pvc‖2

A + 2β

(
‖v − Pvc‖2

A +
b

(H/h)2
‖v − Pvc‖2

DA

)

≃ (1 +
2

α
) ‖vc‖2

Ac
+ 2β

(
‖v − Pvc‖2

A + b H−2 ‖v − Pvc‖2
DG

)

≃ (1 +
2

α
) ‖vc‖2

Ac
+ 2β

(
‖v − Pvc‖2

A + b H−2 ‖v − Pvc‖2
G

)

≤ (1 +
2

α
) ‖vc‖2

Ac
+ 2β max{1, b} Ca ‖v‖2

A

≤
[
2β max{1, b}Ca + (1 +

2

α
) (1 +

√
Ca)2

]
vT Av.

Remark 1. We remark that for any s.p.d. sparse matrix A, we have the simple
estimate

vT Av ≤ κ vT DAv,

where κ ≥ 1 stands for the maximal number of non-zero entries per row of A.

This shows that ‖D− 1
2

A AD
− 1

2

A ‖ ≤ κ and we can let b = κ. Therefore, under our
assumption of quasi-uniform mesh, we may assume that in the estimates derived
in Theorem 1, b is a constant that is both mesh-independent and independent
of the coefficient k(x).



Remark 2. Theorem 1 shows that KTL will be bounded independently of pos-
sible large jumps in the PDE coefficient k = k(x) as long as the approximation
property (10) holds with a constant Ca independent of those jumps.

3 A spectral, element agglomeration based, construction

of coarse spaces with weak approximation property

In the present section, we review an approach of constructing coarse spaces
with weak approximation property (4), or its matrix–vector form (10), that re-
quires knowledge of local element matrices. For details, we refer to the early
papers [BHMV], [ρAMGi], [ρAMGii], and to some more recent ones that explic-
itly address the issue of high-contrast coefficients, [GE10], [SVZ]. Most of these
methods are inherently two–level with the exception of [ρAMGii]. The methods,
for example, in the more recent papers [GE10], [SVZ] can in principle be applied
recursively, however issues related to the use of partition of unity have to be
resolved since the resulting coarse matrices may get fairly ill-conditioned due to
the (nearly) linear dependence of the respectively constructed coarse bases.

We consider the model second order elliptic bilinear form (3) and a quasi-
uniform fine–grid triangulation Th that is fine-enough to resolve the possible large
jumps of the coefficient k = k(x). Without loss of generality, we may assume that
k = k(x) is piecewise constant with respect to the elements of Th. We now present
two spectral aggregation/element agglomeration based approaches to construct
accurate enough coarse spaces. We assume that a set TH of non–overlapping
agglomerated elements {T} has been constructed. This means that each T is
a (connected) union of fine–grid elements {τ}. Let the characteristic mesh size
(diameter of T ∈ TH) be of order H. We do not assume that H is comparable to
the fine–grid mesh–size h. For each T , we assemble the local stiffness matrix AT

and the local weighted mass matrix GT . In addition to the set TH of agglomerated
elements T , we assume that we have respective aggregates {Ai}nA

i=1 where each
A = Ai is contained in a unique T . The set {Ai} provides a non–overlapping
partition of the set Nh of fine–degrees of freedom. The aggregates are easily
constructed based on TH , by assigning the interface nodes, shared by multiple
T̄ , T ∈ TH , to only one of the aggregates. We note that is is advantageous to
assign the interface degrees of freedom to the aggregate with the largest value
of the coefficient, k.

3.1 The construction of tentative prolongator

In [BHMV] the following construction was used. Solve the generalized eigenvalue
problem (we use the equivalent eigenvalue problem as proposed in [GE10])

AT qk = λkGT qk, k = 1, . . . , nT , (11)

where nT is the number of fine–degrees of freedom in T . By choosing the first
mT eigenvectors in the lower part of the spectrum of G−1

T AT , we form the



rectangular matrix QT = [q1, . . . , qmT
]. Then, we extract the rows of QT with

row–indices from the aggregate A (where A ⊂ T ) and form QA. Finally, using for
example SVD, we can form a linearly independent set from the columns of QA.
The resulting matrix P̂A has orthogonal (hence linearly independent) columns.
The global tentative prolongator is simply the block-diagonal matrix, with the
blocking corresponding to individual aggregates,

P̂ =





P̂A1
0 . . . 0

0 P̂A2
. . . 0

0 0
. . . 0

0 . . . 0 P̂AnA




· (12)

Since for quasi-uniform mesh Th it is easily seen that h2DT , the scaled diagonal
of AT , and GT , are uniformly spectrally equivalent, in practice we can instead
solve (as in [BHMV]) the generalized eigenvalue problem equivalent to (11),

AT qk = λkDT qk, k = 1, . . . , nT . (13)

Note that the respective eigenvalues are related as

λk ≃ h−2λk. (14)

It is straightforward to see the following local estimate

‖v − P̂vc‖2
DT

≤ 1

λmT +1
‖v‖2

AT
. (15)

By summing up the local estimates, using the equivalence between h2DT and GT ,
we arrive at the weak approximation property (essentially proven in [BHMV])

H−2 ‖v − P̂vc‖2
G ≤ σ max

T

h2

H2λmT +1
vT Av. (16)

Here, σ is a constant independent of H, h and k = k(x). Noticing now that
1

λmT +1
scales with

(
H
h

)2
(easily seen from (11), since λk scales as H−2 and

λk ≃ h2λk, see (14)), it follows that by choosing mT appropriately (sufficiently
large) a uniform bound with respect to both, H/h and the contrast (the size of
jumps of k = k(x) within each T ) can be ensured. The size of mT depends only
on the number of subdomains of each T where k admits these large jumps. More
detailed investigation on the optimal choice of mT can be found in [GE10], see
also [SVZ]. At any rate, an upper bound for mT is the number of subdomains
of T where k has substantially different values from the other subdomains.

3.2 Alternative construction of tentative prolongator

With the purpose to allow for multilevel extension, we propose the following
alternative procedure. Based on AT , we compute its reduced Schur complement



form SA corresponding to the degrees of freedom of the aggregate A, A ⊂ T .
Then, we solve the generalized eigenvalue problem

SApk = λkDApk, k = 1, . . . , nA,

where DA is, for example, the diagonal of AT restricted to A. Here, nA stands for
the size of A (the number of degrees of freedom in A). The tentative prolongator

is simply the block–diagonal matrix P̂ with block-entries P̂A = [p1, . . . , pmA
]

for a sufficiently large mA ≤ nA. In practice, we choose mA such that for a given
tolerance θ ∈ (0, 1],

λk ≥ θ λmax if k > mA (assuming λs ≤ λs+1). (17)

It is straightforward to see the local estimates

‖vA − P̂Avc
A‖2

DA
≤
(

1

λmA+1

)
vT
ASAvA ≤

(
1

λmA+1

)
vT

T AT vT ,

where vT is any extension of vA (defined on A) to a vector vT =
[
vA
]

defined
on T . We use here the fact that SA is a Schur complement of the symmetric
positive semi–definite matrix AT . By summing up the local estimates over A,
the following global one is obtained (DA is the diagonal of A)

‖v − P̂vc‖2
DA

≤
(

max
A

1

λmA+1

)
vT Av. (18)

Finally, using the uniform spectral equivalence between h2DA and DG (and G),
we obtain the desired weak approximation estimate of the form (16).

Above, DA can be replaced with any other spectrally equivalent matrix D.
For example, in Section 4, we consider a particular choice of D that makes
b = ‖D− 1

2 AD− 1
2 ‖ = 1.

3.3 The smoothed prolongator and its analysis

Based on the tentative prolongator P̂ and the matrix polynomial S = sν(b−1D−1A),

where b : ‖D− 1
2 AD− 1

2 ‖ ≤ b = O(1) and

sν(t) = (−1)ν 1

2ν + 1

T2ν+1(
√

t)√
t

, (19)

with Tl(t) denoting the Chebyshev polynomial of the first kind and degree l over
the interval [−1,+1], we define the actual smoothed aggregation prolongation
matrix P as

P = SP̂ .

The effect of prolongation smoothing is that it makes the prolongation operator,
P , stable in the energy norm. More specifically, letting Q be the D-orthogonal
projection onto the space Range(P̂ ), we get

‖SQv‖A ≤ ‖Sv‖A + ‖S(v − Qv)‖A ≤ ‖v‖A +
b

1
2

2ν + 1
‖v − Qv‖D.



Here, we used the fact that s2
ν(t) ∈ [0, 1] for t ∈ (0, 1], and also its main property

(cf., e.g., [Va08])

sup
t∈(0, 1]

|
√

tsν(t)| ≤ 1

2ν + 1
.

Using now the proven weak approximation property of Qv, i.e., estimate (18),
we arrive at the following final energy norm bound of SQ,

‖SQv‖A ≤
[
1 +

b
1
2

2ν + 1

H

h

(
max
A

h2

H2λmA+1

) 1
2

]
‖v‖A. (20)

Choosing ν ≃ H/h ensures SQ being uniformly bounded in energy. Similarly,

‖v − SQv‖D ≤ ‖S(v − Qv)‖D + ‖(I − S)v‖D ≤ ‖(I − Q)v‖D + ‖(I − S)v‖D

= ‖(I − Q)v‖D + ‖D 1
2

(
I − sν(b−1D−1A)

)
A− 1

2 ‖‖v‖A.

The last matrix norm is estimated as follows

‖D 1
2

(
I − sν(b−1D−1A)

)
A− 1

2 ‖ = ‖X− 1
2

(
I − sν(b−1X)

)
‖, X = A

1
2 D−1A

1
2 .

Therefore,

‖v − SQv‖D ≤ ‖(I − Q)v‖D + b−
1
2 sup

t∈(0, 1]

1−sν(t)√
t

‖v‖A

≤
(

max
A

1√
λmA+1

)
‖v‖A + 1√

b
Cν ‖v‖A.

Thus, using the equivalence h2D ≃ G, we have the final estimate

H−1‖v − SQv‖G ≃ h
H

‖v − SQv‖D

≤ h
H

((
max
A

1√
λmA+1

)
‖v‖A + 1√

b
Cν ‖v‖A

)

≤
((

max
A

h

H
√

λmA+1

)
+ b−

1
2

Cν

2ν+1
2ν+1

H
h

)
‖v‖A.

Since Cν

2ν+1 = O(1) (see [BVV]), by choosing ν ≃ H
h

, we obtain the desired

uniform boundedness of H−1‖v − SQv‖G in terms of ‖v‖A. We summarize:

Theorem 2. The two–level spectral element agglomeration construction of ten-
tative prolongator P̂ combined with the smoothed aggregation construction of
the actual interpolation matrix P = SP̂ where S = sν(b−1D−1A) and sν is
given in (19) for ν ≃ H

h
, ensures the weak approximation property with constant

β1 = O(1):

H−1‖v − SQv‖G ≤ β1

(
1 + max

A

(
h2

H2λmA+1

) 1
2

)
‖v‖A.

Also, the energy stability property holds with constant β2 = O(1):

‖SQv‖A ≤
(

1 + β2 max
A

(
h2

H2λmA+1

) 1
2

)
‖v‖A.



Based on Theorems 1–2, Remark 2 implies the following corollary.

Corollary 1. The two–level spectral element agglomeration construction of ten-
tative prolongator P̂ combined with the smoothed aggregation construction of
the actual interpolation matrix as described in Theorem 2, exhibits convergence
bound KTL that is also contrast independent (in addition to the independence of
both h and H).

4 Numerical experiments

We have implemented a multilevel version of the proposed SA spectral AMGe
algorithm to test the performance of both the two-level (TL) method and its
multilevel (ML) extension. We use agglomeration algorithm that exploits the
fine–grid vertex coordinates, as described in [BVV]. In this way, the aggregates
after the first coarse level have complexity similar to a geometric multigrid.

At coarse levels we use as multigrid relaxation a simple block Gauss–Seidel
smoothing with blocks corresponding to the respective aggregates. At the finest
level, we use as multigrid relaxation the polynomial smoother from [VBT],

pν(t) = (1 − T 2
2ν+1(

√
t))sν(t).

Its smoothing and coercivity properties, (8)-(9), have been analyzed in [BVV].
To select the local eigenvectors (needed in the construction of the tentative

prolongator, see (17)), we used fairly small tolerance θ = 0.01. All experiments
were run as a stationary iteration method with stopping criteria that halts the
iteration once the preconditioned residual norm was reduced by a factor of 10−6

relative to the initial one.
In the experiments, we have chosen the weighted ℓ1–smoother Λ = diag (di)

n
i=1

where for the given s.p.d. matrix A = (aij)
n
i,j=1 and any given positive weights

{wi}, we let di =
∑
j

|aij |wi

wj
. For any given positive weights {wi}, we have

vT Av ≤ vT Λv. In the experiments, we have chosen wl =
√

all. In that case,
we also have that Λ is spectrally equivalent to DA (the diagonal of A), i.e.,
vT DAv ≤ vT Λv ≤ κ vT DAv, where κ is the maximum number of nonzero
entries per row of A. We note that Theorem 1 applies with the above choice of
Λ, since in its proof, we can replace DA with any spectrally equivalent s.p.d.
matrix Λ.

Our fine–grid problem is posed on the unit square domain Ω where the
coefficient k = k(x) takes two values: 1 and 10c for various values of c =
−12,−9,−6,−3, 0, 1, 3, 6, 9, 12. The region where k = 10c is shown in Figure
1 (right). The coefficient is resolved only on the finest mesh (see the middle
of Figure 1) by using adaptive local refinement starting from an unstructured
coarse mesh, shown in Figure 1 (left). The initial mesh does not resolve the
coefficient. The distribution of the values 1 and 10c is illustrated in Figure 1
(right).

Form Table 1, we can see that the two-level (TL) SA spectral AMGe exhibits
convergence factors that are fairly insensitive with respect to the contrast for a



Fig. 1. Initial unstructured mesh (left) that does not resolve the discontinuous coeffi-
cient, its refinement (middle) that resolves the high-contrast discontinuous coefficient,
and the actual distribution of the coefficient values 1 and 10c, c = 3 (right).

c # coarse grid dofs nit ̺

-12 2,729 53 0.74
-9 2,730 53 0.75
-6 2,730 51 0.74
-3 2,720 26 0.60
0 2,660 22 0.60
3 2,728 24 0.60
6 2,744 36 0.65
9 2,744 46 0.70

12 2,744 46 0.70

Table 1. Convergence factor (̺) and number of iterations (nit) for the two–level SA spectral AMGe with ν = 6
(degree of polynomial smoother 3ν +1 = 19). The fine (triangular) mesh is fixed with 465, 712 elements and 233, 499
dofs. The coarse mesh consists of 1, 330 elements. The jump in the PDE coefficient is 10c.

c # coarse grid dofs nT L
it

̺T L nML
it

̺ML

-12 11,191 57 0.73 77 0.79
-9 11,191 56 0.73 77 0.79
-6 11,191 46 0.70 67 0.78
-3 11,193 21 0.53 39 0.71
0 11,073 19 0.54 33 0.72
3 11,199 21 0.53 43 0.73
6 11,199 36 0.64 44 0.71
9 11,199 39 0.65 49 0.69

12 11,199 39 0.65 58 0.71

Table 2. Convergence factor (̺) and number of iterations (nit) for both two-level (TL) and the multilevel (ML)
SA spectral AMGe with ν = 6 (degree of polynomial smoother 3ν + 1 = 19) at the finest level. At coarser level (in
the ML case) block Gauss–Seidel smoother is used with blocks corresponding to the respective aggregates. The fine
(triangular) mesh is fixed with 465, 712 elements and 233, 499 dofs. The coarse mesh consists of 5, 250 elements. The
jump in the PDE coefficient is 10c.

# fine grid
dofs

# fine grid
elements

# dofs at 1st
coarse level

# elements at 1st
coarse level

nML
it

̺ML nT L
it

̺T L
operator

complexity

40,377 80,192 1,237 570 17 0.36 13 0.26 1.13
100,613 200,416 3,410 1,596 29 0.55 19 0.49 1.14
233,499 465,712 11,199 5,250 58 0.71 39 0.65 1.19
578,017 1,153,792 43,026 20,860 84 0.80 38 0.63 1.29

Table 3. Convergence factor (̺) for the two–level and multilevel SA spectral AMGe method with polynomial
smoother at the finest level (ν = 6) and block Gauss–Seidel at coarser levels with blocks corresponding to aggregates.

Fixed jump of 1012 in the PDE coefficient and variable fine-grid mesh. The last column shows the operator complexity
of the multilevel method; namely, the sum of the non-zero entries of all level matrices divided by the number of non–
zero entries of the finest-level matrix.



fixed fine-grid mesh size. Table 2 compares the behavior of the multilevel (ML)
method versus the respective TL one. As we can see, the multilevel convergence
factor seems also quite insensitive with respect to the contrast. Finally, Table
3 illustrates the performance of the TL and ML methods when we vary the
fine–grid size and keep the contrast fixed. The TL convergence factors tend to
stabilize when refining the mesh, whereas the ML ones exhibit some growth.

In conclusion, all TL-results are in good agreement with our theory; namely,
the TL convergence factor stays bounded with both the contrast and is mesh-
independent. Note that, all test were performed as stationary iterative method
(not in a preconditioned CG iteration). If the method is used as a preconditioner
in CG the convergence will be much better.
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